Other Losses
Loss functions exist that are not based on distances nor margins. This section lists other useful losses that are implemented in the package:
MisclassLoss
LossFunctions.MisclassLoss — TypeMisclassLoss{R<:AbstractFloat} <: SupervisedLossMisclassification loss that assigns 1 for misclassified examples and 0 otherwise. It is a generalization of ZeroOneLoss for more than two classes.
The type parameter R specifies the result type of the loss. Default type is double precision R = Float64.
PoissonLoss
LossFunctions.PoissonLoss — TypePoissonLoss <: SupervisedLossLoss under a Poisson noise distribution (KL-divergence)
$L(output, target) = exp(output) - target*output$
CrossEntropyLoss
LossFunctions.CrossEntropyLoss — TypeCrossEntropyLoss <: SupervisedLossThe cross-entropy loss is defined as:
$L(output, target) = - target*log(output) - (1-target)*log(1-output)$