Margin-based Losses

Margin-based Losses

Margin-based loss functions are particularly useful for binary classification. In contrast to the distance-based losses, these do not care about the difference between true target and prediction. Instead they penalize predictions based on how well they agree with the sign of the target.

This section lists all the subtypes of MarginLoss that are implemented in this package.

ZeroOneLoss

ZeroOneLoss <: MarginLoss

The classical classification loss. It penalizes every misclassified observation with a loss of 1 while every correctly classified observation has a loss of 0. It is not convex nor continuous and thus seldom used directly. Instead one usually works with some classification-calibrated surrogate loss, such as L1HingeLoss.

\[L(a) = \begin{cases} 1 & \quad \text{if } a < 0 \\ 0 & \quad \text{if } a >= 0\\ \end{cases}\]

              Lossfunction                     Derivative
      ┌────────────┬────────────┐      ┌────────────┬────────────┐
    1 │------------┐            │    1 │                         │
      │            |            │      │                         │
      │            |            │      │                         │
      │            |            │      │_________________________│
      │            |            │      │                         │
      │            |            │      │                         │
      │            |            │      │                         │
    0 │            └------------│   -1 │                         │
      └────────────┴────────────┘      └────────────┴────────────┘
      -2                        2      -2                        2
                y * h(x)                         y * h(x)
source
LossfunctionDerivative
lossderiv
$L(a) = \begin{cases} 1 & \quad \text{if } a < 0 \\ 0 & \quad \text{otherwise}\\ \end{cases}$$L'(a) = 0$

PerceptronLoss

PerceptronLoss <: MarginLoss

The perceptron loss linearly penalizes every prediction where the resulting agreement <= 0. It is Lipschitz continuous and convex, but not strictly convex.

\[L(a) = \max \{ 0, -a \}\]

              Lossfunction                     Derivative
      ┌────────────┬────────────┐      ┌────────────┬────────────┐
    2 │\.                       │    0 │            ┌------------│
      │ '..                     │      │            |            │
      │   \.                    │      │            |            │
      │     '.                  │      │            |            │
    L │      '.                 │   L' │            |            │
      │        \.               │      │            |            │
      │         '.              │      │            |            │
    0 │           \.____________│   -1 │------------┘            │
      └────────────┴────────────┘      └────────────┴────────────┘
      -2                        2      -2                        2
                 y ⋅ ŷ                            y ⋅ ŷ
source
LossfunctionDerivative
lossderiv
$L(a) = \max \{ 0, - a \}$$L'(a) = \begin{cases} -1 & \quad \text{if } a < 0 \\ 0 & \quad \text{otherwise}\\ \end{cases}$

L1HingeLoss

L1HingeLoss <: MarginLoss

The hinge loss linearly penalizes every predicition where the resulting agreement < 1 . It is Lipschitz continuous and convex, but not strictly convex.

\[L(a) = \max \{ 0, 1 - a \}\]

              Lossfunction                     Derivative
      ┌────────────┬────────────┐      ┌────────────┬────────────┐
    3 │'\.                      │    0 │                  ┌------│
      │  ''_                    │      │                  |      │
      │     \.                  │      │                  |      │
      │       '.                │      │                  |      │
    L │         ''_             │   L' │                  |      │
      │            \.           │      │                  |      │
      │              '.         │      │                  |      │
    0 │                ''_______│   -1 │------------------┘      │
      └────────────┴────────────┘      └────────────┴────────────┘
      -2                        2      -2                        2
                 y ⋅ ŷ                            y ⋅ ŷ
source
LossfunctionDerivative
lossderiv
$L(a) = \max \{ 0, 1 - a \}$$L'(a) = \begin{cases} -1 & \quad \text{if } a < 1 \\ 0 & \quad \text{otherwise}\\ \end{cases}$

SmoothedL1HingeLoss

SmoothedL1HingeLoss <: MarginLoss

As the name suggests a smoothed version of the L1 hinge loss. It is Lipschitz continuous and convex, but not strictly convex.

\[L(a) = \begin{cases} \frac{0.5}{\gamma} \cdot \max \{ 0, 1 - a \} ^2 & \quad \text{if } a \ge 1 - \gamma \\ 1 - \frac{\gamma}{2} - a & \quad \text{otherwise}\\ \end{cases}\]

              Lossfunction (γ=2)               Derivative
      ┌────────────┬────────────┐      ┌────────────┬────────────┐
    2 │\.                       │    0 │                 ,r------│
      │ '.                      │      │               ./'       │
      │   \.                    │      │              ,/         │
      │     '.                  │      │            ./'          │
    L │      '.                 │   L' │           ,'            │
      │        \.               │      │         ,/              │
      │          ',             │      │       ./'               │
    0 │            '*-._________│   -1 │______./                 │
      └────────────┴────────────┘      └────────────┴────────────┘
      -2                        2      -2                        2
                 y ⋅ ŷ                            y ⋅ ŷ
source
LossfunctionDerivative
lossderiv
$L(a) = \begin{cases} \frac{1}{2 \gamma} \cdot \max \{ 0, 1 - a \} ^2 & \quad \text{if } a \ge 1 - \gamma \\ 1 - \frac{\gamma}{2} - a & \quad \text{otherwise}\\ \end{cases}$$L'(a) = \begin{cases} - \frac{1}{\gamma} \cdot \max \{ 0, 1 - a \} & \quad \text{if } a \ge 1 - \gamma \\ - 1 & \quad \text{otherwise}\\ \end{cases}$

ModifiedHuberLoss

ModifiedHuberLoss <: MarginLoss

A special (4 times scaled) case of the SmoothedL1HingeLoss with γ=2. It is Lipschitz continuous and convex, but not strictly convex.

\[L(a) = \begin{cases} \max \{ 0, 1 - a \} ^2 & \quad \text{if } a \ge -1 \\ - 4 a & \quad \text{otherwise}\\ \end{cases}\]

              Lossfunction                     Derivative
      ┌────────────┬────────────┐      ┌────────────┬────────────┐
    5 │    '.                   │    0 │                .+-------│
      │     '.                  │      │              ./'        │
      │      '\                 │      │             ,/          │
      │        \                │      │           ,/            │
    L │         '.              │   L' │         ./              │
      │          '.             │      │       ./'               │
      │            \.           │      │______/'                 │
    0 │              '-.________│   -5 │                         │
      └────────────┴────────────┘      └────────────┴────────────┘
      -2                        2      -2                        2
                 y ⋅ ŷ                            y ⋅ ŷ
source
LossfunctionDerivative
lossderiv
$L(a) = \begin{cases} \max \{ 0, 1 - a \} ^2 & \quad \text{if } a \ge -1 \\ - 4 a & \quad \text{otherwise}\\ \end{cases}$$L'(a) = \begin{cases} - 2 \cdot \max \{ 0, 1 - a \} & \quad \text{if } a \ge -1 \\ - 4 & \quad \text{otherwise}\\ \end{cases}$

DWDMarginLoss

DWDMarginLoss <: MarginLoss

The distance weighted discrimination margin loss. It is a differentiable generalization of the L1HingeLoss that is different than the SmoothedL1HingeLoss. It is Lipschitz continuous and convex, but not strictly convex.

\[L(a) = \begin{cases} 1 - a & \quad \text{if } a \ge \frac{q}{q+1} \\ \frac{1}{a^q} \frac{q^q}{(q+1)^{q+1}} & \quad \text{otherwise}\\ \end{cases}\]

              Lossfunction (q=1)               Derivative
      ┌────────────┬────────────┐      ┌────────────┬────────────┐
    2 │      ".                 │    0 │                     ._r-│
      │        \.               │      │                   ./    │
      │         ',              │      │                 ./      │
      │           \.            │      │                 /       │
    L │            "\.          │   L' │                .        │
      │              \.         │      │                /        │
      │               ":__      │      │               ;         │
    0 │                   '""---│   -1 │---------------┘         │
      └────────────┴────────────┘      └────────────┴────────────┘
      -2                        2      -2                        2
                 y ⋅ ŷ                            y ⋅ ŷ
source
LossfunctionDerivative
lossderiv
$L(a) = \begin{cases} 1 - a & \quad \text{if } a \le \frac{q}{q+1} \\ \frac{1}{a^q} \frac{q^q}{(q+1)^{q+1}} & \quad \text{otherwise}\\ \end{cases}$$L'(a) = \begin{cases} - 1 & \quad \text{if } a \le \frac{q}{q+1} \\ - \frac{1}{a^{q+1}} \left( \frac{q}{q+1} \right)^{q+1} & \quad \text{otherwise}\\ \end{cases}$

L2MarginLoss

L2MarginLoss <: MarginLoss

The margin-based least-squares loss for classification, which penalizes every prediction where agreement != 1 quadratically. It is locally Lipschitz continuous and strongly convex.

\[L(a) = {\left( 1 - a \right)}^2\]

              Lossfunction                     Derivative
      ┌────────────┬────────────┐      ┌────────────┬────────────┐
    5 │     .                   │    2 │                       ,r│
      │     '.                  │      │                     ,/  │
      │      '\                 │      │                   ,/    │
      │        \                │      ├                 ,/      ┤
    L │         '.              │   L' │               ./        │
      │          '.             │      │             ./          │
      │            \.          .│      │           ./            │
    0 │              '-.____.-' │   -3 │         ./              │
      └────────────┴────────────┘      └────────────┴────────────┘
      -2                        2      -2                        2
                 y ⋅ ŷ                            y ⋅ ŷ
source
LossfunctionDerivative
lossderiv
$L(a) = {\left( 1 - a \right)}^2$$L'(a) = 2 \left( a - 1 \right)$

L2HingeLoss

L2HingeLoss <: MarginLoss

The truncated least squares loss quadratically penalizes every predicition where the resulting agreement < 1. It is locally Lipschitz continuous and convex, but not strictly convex.

\[L(a) = \max \{ 0, 1 - a \}^2\]

              Lossfunction                     Derivative
      ┌────────────┬────────────┐      ┌────────────┬────────────┐
    5 │     .                   │    0 │                 ,r------│
      │     '.                  │      │               ,/        │
      │      '\                 │      │             ,/          │
      │        \                │      │           ,/            │
    L │         '.              │   L' │         ./              │
      │          '.             │      │       ./                │
      │            \.           │      │     ./                  │
    0 │              '-.________│   -5 │   ./                    │
      └────────────┴────────────┘      └────────────┴────────────┘
      -2                        2      -2                        2
                 y ⋅ ŷ                            y ⋅ ŷ
source
LossfunctionDerivative
lossderiv
$L(a) = \max \{ 0, 1 - a \} ^2$$L'(a) = \begin{cases} 2 \left( a - 1 \right) & \quad \text{if } a < 1 \\ 0 & \quad \text{otherwise}\\ \end{cases}$

LogitMarginLoss

LogitMarginLoss <: MarginLoss

The margin version of the logistic loss. It is infinitely many times differentiable, strictly convex, and Lipschitz continuous.

\[L(a) = \ln (1 + e^{-a})\]

              Lossfunction                     Derivative
      ┌────────────┬────────────┐      ┌────────────┬────────────┐
    2 │ \.                      │    0 │                  ._--/""│
      │   \.                    │      │               ../'      │
      │     \.                  │      │              ./         │
      │       \..               │      │            ./'          │
    L │         '-_             │   L' │          .,'            │
      │            '-_          │      │         ./              │
      │               '\-._     │      │      .,/'               │
    0 │                    '""*-│   -1 │__.--''                  │
      └────────────┴────────────┘      └────────────┴────────────┘
      -2                        2      -4                        4
                 y ⋅ ŷ                            y ⋅ ŷ
source
LossfunctionDerivative
lossderiv
$L(a) = \ln (1 + e^{-a})$$L'(a) = - \frac{1}{1 + e^a}$

ExpLoss

ExpLoss <: MarginLoss

The margin-based exponential loss for classification, which penalizes every prediction exponentially. It is infinitely many times differentiable, locally Lipschitz continuous and strictly convex, but not clipable.

\[L(a) = e^{-a}\]

              Lossfunction                     Derivative
      ┌────────────┬────────────┐      ┌────────────┬────────────┐
    5 │  \.                     │    0 │               _,,---:'""│
      │   l                     │      │           _r/"'         │
      │    l.                   │      │        .r/'             │
      │     ":                  │      │      .r'                │
    L │       \.                │   L' │     ./                  │
      │        "\..             │      │    .'                   │
      │           '":,_         │      │   ,'                    │
    0 │                ""---:.__│   -5 │  ./                     │
      └────────────┴────────────┘      └────────────┴────────────┘
      -2                        2      -2                        2
                 y ⋅ ŷ                            y ⋅ ŷ
source
LossfunctionDerivative
lossderiv
$L(a) = e^{-a}$$L'(a) = - e^{-a}$

SigmoidLoss

SigmoidLoss <: MarginLoss

Continuous loss which penalizes every prediction with a loss within in the range (0,2). It is infinitely many times differentiable, Lipschitz continuous but nonconvex.

\[L(a) = 1 - \tanh(a)\]

              Lossfunction                     Derivative
      ┌────────────┬────────────┐      ┌────────────┬────────────┐
    2 │""'--,.                  │    0 │..                     ..│
      │      '\.                │      │ "\.                 ./" │
      │         '.              │      │    ',             ,'    │
      │           \.            │      │      \           /      │
    L │            "\.          │   L' │       \         /       │
      │              \.         │      │        \.     ./        │
      │                \,       │      │         \.   ./         │
    0 │                  '"-:.__│   -1 │          ',_,'          │
      └────────────┴────────────┘      └────────────┴────────────┘
      -2                        2      -2                        2
                 y ⋅ ŷ                            y ⋅ ŷ
source
LossfunctionDerivative
lossderiv
$L(a) = 1 - \tanh(a)$$L'(a) = - \textrm{sech}^2 (a)$