Other Losses
Loss functions exist that are not based on distances nor margins. This section lists other useful losses that are implemented in the package:
MisclassLoss
LossFunctions.MisclassLoss
— TypeMisclassLoss{R<:AbstractFloat} <: SupervisedLoss
Misclassification loss that assigns 1
for misclassified examples and 0
otherwise. It is a generalization of ZeroOneLoss
for more than two classes.
The type parameter R
specifies the result type of the loss. Default type is double precision R = Float64
.
PoissonLoss
LossFunctions.PoissonLoss
— TypePoissonLoss <: SupervisedLoss
Loss under a Poisson noise distribution (KL-divergence)
$L(output, target) = exp(output) - target*output$
CrossEntropyLoss
LossFunctions.CrossEntropyLoss
— TypeCrossEntropyLoss <: SupervisedLoss
The cross-entropy loss is defined as:
$L(output, target) = - target*log(output) - (1-target)*log(1-output)$