Accuracy
MLMetrics.accuracy
— Function.accuracy(targets, outputs, [encoding]; [normalize = true]) -> Float64
Compute the fraction of correctly predicted outcomes in outputs
according to the given true targets
. This is known as the classification accuracy.
If encoding
is omitted, the appropriate MLLabelUtils.LabelEncoding
will be inferred from the types and/or values of targets
and outputs
. Note that omitting the encoding
can cause performance penalties, which may include a lack of return-type inference.
Arguments
targets::AbstractArray
: The array of ground truths $\mathbf{y}$.outputs::AbstractArray
: The array of predicted outputs $\mathbf{\hat{y}}$.encoding
: Optional. Specifies the possible values intargets
andoutputs
and their interpretation (e.g. what constitutes as a positive or negative label, how many labels exist, etc). It can either be an object from the namespaceLabelEnc
, or a vector of labels.normalize::Bool
: Optional keyword argument. Iftrue
, the function will return the fraction of correctly classified observations inoutputs
. Otherwise it returns the total number. Defaults totrue
.
See also
Examples
julia> accuracy([:a,:b,:a,:c,:c], [:a,:c,:b,:c,:c])
0.6
julia> accuracy([:a,:b,:a,:c,:c], [:a,:c,:b,:c,:c], normalize=false)
3.0
julia> accuracy([1,0,0,1,1], [1,-1,-1,-1,1], LabelEnc.FuzzyBinary())
0.8