False Positive Rate
MLMetrics.false_positive_rate
— Function.false_positive_rate(targets, outputs, [encoding], [avgmode = :none]) -> Union{Float64, Dict}
Return the fraction of truly negative observations in outputs
that were (wrongly) predicted as positives. What constitutes "truly negative" depends on to the corresponding targets
and the given (or inferred) encoding
.
If encoding
is omitted, the appropriate MLLabelUtils.LabelEncoding
will be inferred from the types and/or values of targets
and outputs
. Note that omitting the encoding
can cause performance penalties, which may include a lack of return-type inference.
The return value of the function depends on the number of labels in the given encoding
and on the specified avgmode
. In case an avgmode
other than :none
is specified, or the encoding
is binary (i.e. it has exactly 2 labels), a single number is returned. Otherwise, the function will compute a separate result for each individual label, where that label is treated as "positive" and the other labels are treated as "negative". These results are then returned as a single dictionary with an entry for each label.
Arguments
targets::AbstractArray
: The array of ground truths $\mathbf{y}$.outputs::AbstractArray
: The array of predicted outputs $\mathbf{\hat{y}}$.encoding
: Optional. Specifies the possible values intargets
andoutputs
and their interpretation (e.g. what constitutes as a positive or negative label, how many labels exist, etc). It can either be an object from the namespaceLabelEnc
, or a vector of labels.avgmode
: Optional keyword argument. Specifies if and how class-specific results should be aggregated. This is mainly useful if there are more than two classes. Typical values are:none
(default),:micro
for micro averaging, or:macro
for macro averaging. It is also possible to specifyavgmode
as a type-stable positional argument using an object from theAvgMode
namespace.
See also
true_positives
, positive_predictive_value
(aka "precision"), true_negative_rate
(aka "specificity"), f_score
Examples
julia> false_positive_rate([0,1,1,0,1], [1,1,1,0,1])
0.5
julia> false_positive_rate([-1,1,1,-1,1], [1,1,1,-1,1])
0.5
julia> false_positive_rate([:a,:b,:a,:c,:c], [:a,:c,:b,:c,:c], LabelEnc.OneVsRest(:b))
0.25
julia> false_positive_rate([:a,:b,:a,:c,:c], [:a,:c,:b,:c,:c]) # avgmode=:none
Dict{Symbol,Float64} with 3 entries:
:a => 0.0
:b => 0.25
:c => 0.333333
julia> false_positive_rate([:a,:b,:a,:c,:c], [:a,:c,:b,:c,:c], avgmode=:micro)
0.2
julia> false_positive_rate([:a,:b,:a,:c,:c], [:a,:c,:b,:c,:c], avgmode=:macro)
0.19444444444444442